Bilateral Calcaneal Stress Fractures.
Case Report

Ahmet Imerci1,2(A,F,G), Mustafa İncesu2(A,B,E), Muhammet Bozoglan3(C,D,E,G), Umut Canbek4(A,B,D), Hüseyin Tamer Ursavas2(B,C,E,G)

1 Department of Orthopaedics and Traumatology, Erzurum Palandoken State Hospital, Erzurum, Turkey
2 Department of Orthopaedics and Traumatology, Tepecik Education and Research Hospital, Izmir, Turkey
3 Department of Orthopaedics and Traumatology, Mardin Derik State Hospital, Mardin, Turkey
4 Department of Orthopaedics and Traumatology, Mugla University, Mugla, Turkey

SUMMARY

The majority of plantar heel pain is diagnosed as plantar fasciitis or heel spur syndrome. When history or physical findings are unusual or when routine treatment proves ineffective, one should consider an atypical cause of heel pain. Stress fractures of the calcaneus are a frequently unrecognized source of heel pain. In a normal population, the possibility of calcaneal stress fractures must be borne in mind with patients who have bilateral heel pain. When a stress fracture is considered, clinicians have different imaging options. First of all, x-rays must be used to evaluate for any visible osseous pathology. If plain films are inconclusive, the clinician can proceed with a bone scan or Magnetic Resonance Imaging. In the literature, calcaneal stress fractures are mostly reported in soldiers or athletes, but our case is one of a 44-year-old housewife with bilateral heel pain treated as Achilles tendinitis and plantar faciitis for a long time. Her final diagnosis was bilateral calcaneal fracture by Magnetic Resonance Imaging.

Key words: bilateral heel pain; calcaneal stress fracture; treatment
Stress fractures were first identified by Breithaupt, a Prussian army physician, in 1855 [1,2]. There are two types of stress fractures: fatigue fractures and insufficiency fractures. Calcaneal stress injuries are considered to be fairly common, especially in military recruits [3,4]. In addition, calcaneal stress fractures are more likely to occur in athletes who participate in sports that require running and jumping [5].

Heel pain is a common condition in adults that may cause significant discomfort and disability. A variety of soft tissue, osseous, and systemic disorders can cause heel pain. Narrowing the differential diagnosis begins with a history and physical examination of the lower extremity to pinpoint the anatomic origin of the heel pain. The most common cause of bilateral heel pain in adults is plantar fasciitis [5,6].

Stress fractures are frequent in the tibia, femur and metatarsal bones, but rarely reported for the calcaneal bone [7]. Because a radiograph does not always confirm a conclusive diagnosis, computed tomography or scintigraphy of the osseous structure may be necessary [8,9]. Magnetic Resonance Imaging (MRI) has proven to be an excellent method for diagnosing stress fractures and the literature contains numerous studies supporting this premise [1,10,11].

CASE REPORT

A 44-years old woman who had a sedentary lifestyle was seen in our outpatient clinic because of bilateral heel pain. Her history revealed that her pain had begun 3 months before and she had had non-steroidal anti-inflammatory agents because of Achilles and plantar fasciitis in different hospitals. Her pain increased with activity and decreased with rest. There was no association with any history of trauma or co-existing diseases. She also have a negative history of alcohol, drug and cigarette use. Her body mass index was 22.6 kg/m². Physical examination is typically performed by squeezing the posterior third of the calcaneus between the thumb and index finger. The erythrocyte sedimentation rate, routine hematologic and biochemical analysis as well as the rheumatological tests were in the normal ranges. Her bone mineral density (BMD) was measured from the femoral neck, proximal femur and lumbar spine (L1-L4 vertebrae) by dual-emission X-ray absorptiometry (DEXA). The T score was -1.4 standard deviations (SD). Right standard lateral x-rays were obtained and demonstrated a subtle sclerotic line in the posterior calcaneus (Fig. 1). Left standard lateral radiographs (Fig. 2) were obtained, but were unremarkable. Bilateral calcaneal MR images demonstrated a well-defined fracture line along with significant marrow edema on both T1 and T2 images (Fig. 3,4,5,6).

Her treatment was bilateral short leg splints for 2 weeks. After the casts were removed, she was allowed weight bearing with crutches, A 0.5-inch sponge rubber was inserted in her shoes. In the sixth week when the symptoms began to decline, crutches were dropped. In the eight week, the patient resumed her daily activity without any symptoms.

DISCUSSION

A stress fracture is, by definition, a breach of the mechanical integrity of a bone as a result of the application of abnormal and repetitive stress [11]. Diagnosing calcaneal stress fractures can be a complica-
Fig. 2. Left lateral radiographs were unremarkable

Fig. 3. (Right) Outlining a well-defined stress fracture line on T1 image. There is also decreased signal surrounding the fracture line, which represents marrow edema and inflammation

Fig. 4. (Left) Outlining a well-defined stress fracture line on T1 image. There is also decreased signal surrounding the fracture line, which represents marrow edema and inflammation
ted task for the clinician, as localized pain and tenderness to the posterior and/or plantar heel most often represent plantar fasciitis. Due to their relatively uncommon incidence when compared with these other stress fractures and other causes of heel pain, such as plantar fasciitis, they are often misdiagnosed or overlooked [1,12]. In general, progressive pain that begins insidiously after a change in shoe wear, activity level, or some other alteration of an individual’s daily routine is one of the most common initial symptoms of a stress fracture [11,13].

There are two types of stress fractures: fatigue fractures and insufficiency fractures. Fatigue stress fractures are what most clinicians refer to when diagnosing a patient with a stress fracture. Fatigue stress fractures occur in normal bone that is subjected to abnormal, repetitive stress [1,3,8]. Examples of fatigue fractures include stress fractures occurring in patients who have suddenly increased their activity levels, in military recruits undergoing basic training, and in patients with jobs that require them to walk or stand for extended periods of time on hard surfaces. The underlying mechanism here is that the patient’s skeleton is subjected to an increased, uncharacteristic stress [11,13]. Our patient had a sedentary lifestyle.

Insufficiency stress fractures are those that occur in abnormal, weak, or unhealthy bone. Examples of insufficiency fractures include stress fractures in patients with osteoporosis, a history of long-term corticosteroid therapy, diabetes mellitus, menstrual irregularity, osteoporosis, smoking and alcohol intake, hypothyroidism, anorexia nervosa, Paget disease, rhe-

Fig. 5. (Right) Fracture line and marrow edema on T2 image. There is significant increase in signal intensity, which represents marrow edema

Fig. 6. (Left) Fracture line and marrow edema on T2 image. There is significant increase in signal intensity, which represents marrow edema
REFERENCES